Department of Mathematics University of Florida

Enumerating k-isomorphism classes of totally ramified degree-p extensions of the local field $k((\pi))$

Duc Van Huynh

May 19, 2014

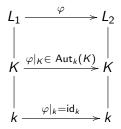
- Shigeru Amano, Eisenstein equations of degree p in a p-adic field, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 1-21
- Ivan Fesenko and Sergei Vostokov, Local Fields and Their Extensions, Translation of Mathematical Monographs V. 121, (AMS, 2002)
- Benjamin Klopsch, Automorphisms of the Nottingham Group, Journal of Algebra 223 (2000) 37-56

Statement of the problem

- Let K be a local field of characteristic p with residue field k of order q, where q is p-power.
- 2 Let E_λ be the set of all totally ramified extensions L/K of degree p in K_s with ramification break λ.
- **3** Say L_1/K , L_2/K are k-isomorphic if there exists an isomorphism $\varphi : L_1 \to L_2$ such that $\varphi(K) = K$ and φ is the identity on k.
- **4** We would like to enumerate the *k*-isomorphism classes of E_{λ} .

Enumeration of Isomorphism Classes

$$L_1/K \cong_k L_2/K$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

Let $\lambda \in \frac{1}{p-1}\mathbb{N}$, and let d be the denominator of λ when it is in reduced form. Define S_{λ} to be the set of k-isomorphism classes of E_{λ} . Then we have

$$|\mathcal{S}_\lambda| = (p-1) \operatorname{\mathsf{gcd}} \left(rac{q-1}{p-1}, d\lambda
ight).$$

Theorem

Define S_{λ}^{g} (resp. S_{λ}^{ng}) to be the set of *k*-isomorphism classes of degree *p* totally ramified Galois (resp. non-Galois) extensions with ramification break λ . Then, if λ is an integer, we have

(i)
$$|\mathcal{S}_{\lambda}^{g}| = \gcd\left(\frac{q-1}{p-1},\lambda\right)$$
 and
(ii) $|\mathcal{S}_{\lambda}^{ng}| = (p-2)\gcd\left(\frac{q-1}{p-1},\lambda\right)$, while
(iii) $|\mathcal{S}_{\lambda}^{ng}| = (p-1)\gcd\left(\frac{q-1}{p-1},d\lambda\right)$ if λ is not an integer.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline of Attack on the Problem

Group of automorphisms

- **1** Let $A = \operatorname{Aut}_k(K)$.
- **2** Let $U_{1,K} = 1 + \pi_K O_K$, where π_K is a prime element of K.

- **3** $\varphi \in A$ is defined by its action on π_K .
- 4 $\varphi(\pi_K) = av_{\varphi}\pi_K$, where $a \in k^{\times}$ and $v_{\varphi} \in U_{1,K}$.

Outline of Attack on the Problem

Strategy of attack

- I Find an Eisenstein polynomial in a standard form corresponding to each L/K ∈ E_λ. Let P_λ be the set of all such Eisenstein polynomials.
- **2** For $f(X), g(X) \in P_{\lambda}$, we denote $f(X) \sim g(X)$ if $K[X]/(f(X)) \cong K[X]/(g(X))$.
- 3 Let $\varphi \in A$ and $f(X) = X^p + a_{p-1}X^{p-1} + \cdots + a_1X + a_0$. Define

$$\varphi(f(X)) = X^p + \varphi(a_{p-1})X^{p-1} + \ldots + \varphi(a_1)X + \varphi(a_0).$$

4 Enumerating the *k*-isomorphism classes of E_{λ} is equivalent to enumerating the orbits of the action of A on P_{λ}/\sim .

The Work of Amano

Invariants of L/K

- A prime element $\pi_L \in L$ satisfies an Eisenstein polynomial $f(X) = X^p \sum_{i=1}^{p-1} a_i X^i \pi_K a_0$, with $a_0 \in U_{1,K}$.
- 2 Set m = min{ν_K(a₁),..., ν_K(a_{p-1})}, where ν_K is the valuation of K_s such that ν_K(π_K) = 1. Denote by n the least positive integer such that ν_K(a_n) = m. Let ω ∈ k[×] be such that ν_K(a_n − ωπ^m_K) > ν_K(a_n).
- **3** n, m, ω are invariants of L/K. We say that L/K has type (n, m, ω) .

4 We can write
$$\lambda = \frac{(m-1)p+n}{p-1}$$
, where $1 \le n \le p-1$.

 $L \cong K[X]/(A_{\omega,u}(X))$, where $A_{\omega,u}(X) = X^p - \omega \pi_K^m X^n - u \pi_K$, where $u \in U_{1,K}$ and $\omega \in k^{\times}$.

- **5** For each prime element π of *L*, define $\psi(\pi) = \pi^p \omega \pi_K^m \pi^n N_{L/K}(\pi)$.
- **6** Let ν_L be the valuation of K_s normalized on L. If $\psi(\pi_1) \neq 0$, then there exists a prime element π_2 of L such that $\nu_L(\psi(\pi_2)) > \nu_L(\psi(\pi_1))$.
- **2** Let $\pi \in L$ be such that $\nu_L(\pi) > p(\lambda + 1)$. Let $\pi_K a = N_{L/K}(\pi)$ for some $a \in U_{1,K}$.

B For
$$1 \le i \le p$$
, let $\pi^{(i)}$ be the roots of
 $A_{\omega,a}(X) = X^p - \omega \pi_K^m X^n - \pi_K a$. Then we find that
 $\nu_L(\pi - \pi^{(j)}) > \lambda + 1$ for some j . It follows that $L = K(\pi^{(j)})$
by Krasner's Lemma.

L/K is Galois if and only λ is an integer and $n\omega \in (k^{\times})^{p-1}$.

- We show that if λ is an integer, then L/K is Galois exactly when $n\omega \in (k^{\times})^{p-1}$.
- 2 Write $L = K(\pi_1)$, where π_1 is a root of the Amano polynomial $A_{\omega,u}(X)$. Let $\pi_2 \neq \pi_1$ be a conjugate of π_1 . We can write $\pi_2 = \pi_1(1 + \pi_1^{\lambda}Y)$ for some unit $Y \in K_s$.
- 3 $\pi_2 \in L$ exactly when $Y \in L$.
- 4 Using the fact that π_1, π_2 are roots of $A_{\omega,u}(X)$, we find that $Y^p \sum_{i=1}^p {n \choose i} \omega \pi_K^m \pi_1^{\lambda(i-1)-pm} Y^i = 0.$

5 We find that $Y^p - n\omega Y \equiv 0 \pmod{\pi_1}$.

Outline of proof

1 Let
$$P_{\lambda} = \{X^{p} - \omega \pi_{K}^{m} X^{n} - u \pi_{K} : \omega \in k^{\times}, u \in U_{1,K}\}$$

2 Let
$$\varphi \in A$$
 and let $A_{\omega,u}(X) = X^p - \omega \pi_K^m X^n - u \pi_K \in P_\lambda$.

3 There exist ω', u' such that

$$\mathcal{K}[X]/(\varphi(A_{\omega,u}(X))\cong \mathcal{K}[X]/(A_{\omega',u'}(X)).$$

4 Define action of A on P_{λ}/\sim by

$$\varphi \cdot [A_{\omega,u}(X)] = [A_{\omega',u'}(X)].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Action on Amano Polynomials

Outline of proof

5 We find that

$$A_{\omega,u}(X) \sim A_{\omega a^{(p-1)\lambda},v}(X),$$

for all $a \in k^{\times}$ and $v \in U_{1,K}$.

6 Let

$$\{r_1, r_2, ..., r_{p-2}, r_{p-1}\}$$

be a set of representatives of $k^{\times}/(k^{\times})^{p-1}$. Assume without loss of generality that $r_1 = 1$.

- 7 Write $n\omega = r_i t^{p-1}$, for some r_i and $t \in k^{\times}$.
- B Recall that L/K is Galois if and only λ is an integer and nω ∈ (k[×])^{p−1}.

Outline of proof

9 Cardinality of $\mathcal{S}_{\lambda}^{g}$ for $\lambda \in \mathbb{Z}$. (a) If $r_i \neq 1$, then $n\omega \notin (k^{\times})^{p-1}$, which implies L/K not Galois. (b) Hence, $r_i = 1$. (c) $|\mathcal{S}_{\lambda}^{g}| = |(k^{\times})^{p-1}/(k^{\times})^{\lambda(p-1)}|.$ **10** Cardinality of $\mathcal{S}_{\lambda}^{ng}$ for $\lambda \in \mathbb{Z}$. (a) We want $r_i \neq 1$, else $n\omega \in (k^{\times})^{p-1}$, which implies L/K is Galois. (b) There are p-2 choices for r_i . (c) $|\mathcal{S}_{\lambda}^{ng}| = (p-2)|(k^{\times})^{p-1}/(k^{\times})^{\lambda(p-1)}|.$ **II** Cardinality of $\mathcal{S}_{\lambda}^{ng}$ for $\lambda \notin \mathbb{Z}$. (a) There are p-1 choices for r_i . (b) $|\mathcal{S}_{\lambda}^{ng}| = (p-1)|(k^{\times})^{p-1}/(k^{\times})^{\lambda(p-1)}|.$